R&D Update from the National Airport Pavement Test Facility

Presented to: SWIFT 2009

By: Jeffrey Gagnon, P.E. Manager, AJP-6312

Date: September 16, 2009

Airport Technology R&D Program

- Introduction
- Full Scale Testing
- Software
- Research Projects
- Facility Upgrades
- Up Coming Events

Acknowledgments

- Staff @ NAPTF
 - Satish Agrawal
 - Gordon Hayhoe
 - Robert "Murphy" Flynn
 - Albert Larkin
 - Navneet Garg
 - David Brill
 - Don Barbagallo
 - Qingge Jia
- Consultants
 - Roy McQueen
 - Dick Ahlvin

Support Contractor – SRA

- Chuck Teubert
- Edward Guo
- May Dong
- Izydor Kawa
- Lia Ricalde
- Injun Song
- Quing Wang

Federal Aviation Administration Airport Technology R&D Program

- Research conducted at the FAA William J. Hughes Technical Center, Atlantic City, NJ, USA.
- Sponsor: FAA Office of Airport Safety and Standards (AAS100), Washington, DC.
- Provide support for development of FAA pavement standards (Advisory Circulars).

National Airport Pavement Test Facility (NAPTF)

FACTS:

- Fully enclosed facility for accelerated traffic testing of airport pavements.
- Full-scale pavement structures and landing gear loads with programmed wander.
- Opened in 1999.
- Total construction contract was \$21M.
 - \$14M from FAA
 - \$7M from Boeing Co. under FAA/Boeing CRDA.

NAPTF Construction Cycle (CC)

Full Scale Testing

Construction Cycle 5 (CC5) – Flexible Pavement

Objectives

- Determine the effect of gear interaction on low-strength subgrade flexible pavement life.
- Study the Performance of different quality subbase materials.

• History

- Construction Completed: July 14, 2008
- Started Loading: August 14, 2008
- Increased wheel load from 50k to 58k: October 7, 2008
- Cold Weather Shut Down: November 12, 2008
- 12,276 passes restart
- Restarted testing on Sept 1st at 65k

Full Scale Testing CC5 Test Plan & Profile NORTH

DuPONT CLAY SUBGRADE (TARGET CBR - 3.4)

Full Scale Testing CC5 Gear Configuration

R&D Update – SWIFT 2009 September 16, 2009

Federal Aviation Administration

Full Scale Testing CC5 Rut Depth Measurements

CC5- Rut Depth Measurements

Full Scale Testing

Construction Cycle 6 (CC6) – Rigid Pavement

Objectives

- Primary
 - The effect of concrete modulus of elasticity (*E*) on rigid pavement structural life
- Secondary
 - Perform side-by-side comparison of Cement and Asphalt stabilized bases.
 - Perform side-by-side comparison of thickened edge isolation joint and reinforced isolation joint.
 - Develop a standard procedure for using PSPA on rigid pavement.
 - Study the required compaction requirements under rigid pavements.

Full Scale Testing CC6 Layout and Details

Full Scale Testing CC6 Pavement Design

Full Scale Testing Construction Cycle 6

Started on June 24, 2009

R&D Update – SWIFT 2009 September 16, 2009

Issues

- As airplane weights have increased, so have wheel loads and tire pressures.
- ICAO tire pressure limits under the ACN-PCN system are fixed.
- Tire pressures are now crossing the ICAO limit and in the future some aircraft may not be allowed to operate at full load on some pavements.
- A340-500/-600, 747-400ER, A380-800F, 777-300ER and new 787, A350 and 747-8 all exceed category X upper limit.

Objectives

- To control and increase pavement temperatures of a HMA layer
- Compare rutting @ tire pressures of 218 and 240 psi with single wheel loads of 60-65 K
- Propose Changes to ICAO
 Tire Pressure Categories

Tire Pressure Category	Current ICAO Limits Psi (MPa)	Proposed New ICAO Limits Psi (MPa)
W	Unlimited	Unlimited
X	217 (1.50)	240 (1.65)
Y	145 (1.0)	181 (1.25)
Z	72 (.50)	72 (.50)

PAVEMENT TEMPERATURE

Objectives

- Study the feasibility of conducting large scale accelerated Alkali Silica Reactivity in concrete slabs.
 - Develop methods to accelerate the ASR reaction.
- Investigate the effects of ASR on the structural capacity of concrete slabs.
 - Develop plans to apply loads to the ASR affected slabs.
 - Monitor deterioration of slabs both with and without loading.

Data	Interior Slabs			Exterior Slabs				
	Α	В	С	Α	В	С		
Size	15 × 15 ft.							
Thickness	12 in.							
Concrete Mix	Reactive Aggregates; High-Alkali Cement (min. 0.82% Na ₂ O _{eg}); 0.55 w/c							
Air Entrainment*	No admixture 1.2%	No admixture 0.9%	4% 5.4%	No admixture 1.2%	No admixture 1.0%	4% 5.2%		
Fly Ash*	0	30% CI. F	0	0	30% Cl. F	0		
Deicer	Potassium Acetate							

*Both air entrainment and fly ash replacement will reduce susceptibility to ASR in concrete mixtures.

As-Built Test Results

Full Scale Testing Alkali-Silica Reactive (ASR) Slabs Exterior Interior

Macro Changes

- Physical Expansion (install survey pins to measure gross length change).
- Modulus of Elasticity (PSPA, GPR, HWD, etc.).
- Joint gage monitoring.

Micro Structural Changes

- Presence and location of ASR cracks.
- Presence and location of ASR gel.
- Alteration of paste chemistry.

Petrography

 Cores at 12, 18 and 24 months will be sent to Clemson University for evaluation.

Standard ASTM 1260 & 1567 Results for NJ Aggregate

Software FAARFIELD

<u>F</u>ederal

<u>A</u>viation

<u>Administration</u>

<u>R</u>igid and

<u>F</u>lexible

Iterative

<u>L</u>ayered

<u>D</u>esign

- Computer program for desktop PCs.
- Program preserves the "look and feel" of LEDFAA 1.3.
- Major changes are internal.
- Incorporates advanced structural models:
 - 3-D finite element analysis for rigid pavements and overlays.
 - NIKE3D (3D finite element analysis)
 - INGRID (3D mesh generation)
 - Layered elastic analysis (LEAF) for flexible pavements and overlays.

Software FAARFIELD

• Key Differences from LEDFAA 1.3

- Rigid Pavements/Overlays
 - Slab edge stresses are now computed directly using 3D-FEM.
 - Completely revised rigid pavement failure model.
 - Rewrote and improved rigid overlay design procedures.
 - Supports PCC overlay design on rubblized base.
- Flexible Pavements/Overlays
 - Automatic base thickness design.
 - Supports HMA overlay design on rubblized base.

Software FAARFIELD

• Key Differences from LEDFAA 1.3

- General
 - Upgrade to MS Visual Basic.NET programming environment.
 - Aircraft library updated.
 - New function allows user to export design data to XML.
 - All user options collected on one "Options" screen.
 - External aircraft library in XML format.
 - Displays CDF values graphically.
 - Enhanced Airplane Data window now displays gear coordinates.
 - Design is now computed for constant tire contact area.

<u>Computation of ACN/PCN Federal Aviation Administration</u>

- The new PCN methodology will use the CDF concept
- Incorporated in a new advisory circular AC 150/5335-5B "Standardized Method of Reporting Airport Pavement Strength – PCN," replacing AC 150/5335-5A.

Software COMFAA 3.0

2. Input Concrete Strength

Software COMFAA 3.0

Aircraft Group		Design	Gross	Coverages	Flex Ann Dep	Rig Ann Dep	% GW	No. Main 🔺	
Generic	AI	rcraft (21)	Weight (Ibs)	[20 yr total]	P/C	P/C	on Main Gear	Gears	
Airbus Pooing	A30	0 B4 std	365,750	4,579	414	831	95.00	2	
McDonnell Douglas	A318-100 std		124,500 3,593		654	654	95.00	2	
Other Commercial	A31	9-100 std	142,500	142,500 70,663		12,967	95.00	2	
Military Eutoroal Library	A32	0-100	151,000 79,583		15,280	15,280	95.00	2	
External Library	A33	0-200 std	509,000 936		88	176	95.00	2	
Library Aircraft	A34	0-200 std	608,000	1,884	179	358	78.00	2	
3707-320C	A38	0 2D	1,235,000	309 30		59	38.00	2	
717-200 HGW	B71	7-200	122,000	1,701	301	301	95.00	2	
727-100C Alternate	B72	7-200	105 200	700	111	111	95.00	2	
dv. B727-200 Basic	<u>basi</u>	C	103,200	700	0 111		35.00	2	
dy. 8727-200 Uption 737-100	1 1 1 1	7 700	100 000	00 700 10 441		10 441	05.00	2 D	
dv. B737-200									
dv. B737-200 LP									
737-300		Add	<u>R</u> emov	e S	Save List	Clear List	Float A	ircraft	
737-400									
737-500		Church Eut Ei	load Eut	File Ca	we to Elect	Add Eleast			
737-700		JAVELAUTI							
737-800						-			
737-900 ER 🛛 🗸 🗸		Back	Cancel		Help				

Traffic mix can be created by adding or removing airplanes from existing Aircraft Group library or by loading an Ext text file

Software COMFAA 3.0 – Additional Analysis

Additional options allow edge stress and PCA center case stress calculations.

ACN mode of existing COMFAA program still available

Software COMFAA 3.0 – Results Page

Results Rigid 7-9-2	009.txt - Notepad								
Eile Edit Format View Help									
This file name = Results Rigid 7-9-2009.txt Library file name = C:\COMFAA 3.0 Beta 7-7-09\COMFAAaircraftPCN.Ext									
Evaluation pavement type is rigid Equivalent coverages computed with the AC 150/5320-6C/D method. Maximum gross weight computed with the AC 150/5320-6C/D method.									
Ev	k Value = 323.0 lbs∕in^3 flexural strength = 700.0 psi Evaluation pavement thickness = 18.00 in								
Aircraft Name	Gross Percent Weight Gross Wt	Tire Ann Press De	ual ps	20-yr Coverages	6D Thick				
A300 B4 std A318-100 std A319-100 std A320-100 A330-200 std A340-200 std A380 2D B717-200 basic B727-200 basic B737-700 B747-400 B757-300 B767-300 ER B777-200 Baseline B787-8 pre DC10-10 DC-8 DC-9-30 MD-11 MD-83 MD-90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 216.1\\ 147.9\\ 172.6\\ 13200.1\\ 15\\ 205.9\\ 206.0\\ 218.0\\ 164.0\\ 148.0\\ 205.0\\ 148.0\\ 205.0\\ 164.0\\ 148.0\\ 205.0\\ 195.0\\ 195.0\\ 195.0\\ 195.0\\ 195.0\\ 195.0\\ 195.0\\ 195.0\\ 195.0\\ 195.0\\ 195.0\\ 193.0\\ \end{array}$	836 670 ,143 ,360 88 177 59 302 111 ,731 ,731 ,208 ,556 ,092 32 119 79 8 44 739 214	$\begin{array}{c} 4,579\\ 3,593\\ 79,583\\ 936\\ 1,884\\ 309\\ 1,701\\ 760\\ 96,709\\ 4,358\\ 51,555\\ 14,006\\ 5,153\\ 169\\ 622\\ 472\\ 44\\ 240\\ 4,322\\ 1,283\\ \end{array}$	$\begin{array}{c} 11.64\\ 9.67\\ 12.90\\ 13.82\\ 11.71\\ 11.99\\ 11.50\\ 10.33\\ 11.84\\ 15.76\\ 12.06\\ 11.69\\ 12.50\\ 9.63\\ 11.45\\ 10.90\\ 11.45\\ 10.90\\ 11.19\\ 8.49\\ 11.58\\ 12.54\\ 12.54\\ 12.54\\ 12.29\\ \end{array}$	PCN Results-			
Aircraft Name	Critical Aircraft Max Total Equiv. Covs. Gr	r. Allowable . coss Weight <u>A</u>	PCN at I (552) B(ndicated S 295) C(147	trength) D(74)	B subgrade			
A300 B4 std A318-100 std A319-100 std A320-100 A330-200 std A340-200 std A380 2D B717-200 B727-200 basic	1,365,963 43 >10,000,000 14 6,366,010 17 1,474,734 16 400,263 63 388,029 76 267,332 1,51 >10,000,000 14 274,674 23	04,944.4 8,189.5 4,640.1 06,268.9 19,943.1 4,511.7 4,318.0 17,214.7 13,290.4	62.1 7 33.6 3 44.4 4 51.2 5 70.8 7 71.0 8 73.7 8 43.6 4 65.5 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.2 40.9 52.3 58.9 115.8 116.3 119.0 49.2 76.3				

Software FAA PAVEAIR

• Background

- A joint initiative between the FAA and the National Association of State Aviation Officials (NASAO) to develop a system for sharing information to optimize the expenditure of funds.
- An Internet (Web) based system was deemed to be the best option considering the mature status of web-based applications.
- The FAA also has a need for system-wide dissemination and analysis of the performance of FAA sponsored pavement projects.
- A collection of airport pavement design and evaluation computer programs has also been developed and a dedicated PMS software application would tie these programs together.

Software FAA PAVEAIR

• Program Requirements

- Web-based application that provides a system for easy dissemination of information for airport pavement construction, maintenance, and management.
- Data for multiple airports available on a single server connected to the web
- Make the complete application available for free download:
 - As a set of installation files.
 - Full source code.
 - Documentation for installation and operation.
- Suitable for installation and use on:
 - Single PC
 - Private network
 - Intranet or Internet.

Software FAA PAVEAIR

Current Status – Subject to Testing and Reviews

- The development phase of alpha version should be complete by September 2009
- Testing is anticipated to continue for approximately one year
- The release of a beta version should take place prior to September 2010
- The first release of FAA PAVEAIR will have the same functionality of MicroPAVER version 5.3.
- Tentative first deployment September 2010.

Software FAA PAVEAIR

Possible Implementations

- By the FAA for AIP projects.
- By FAA regions for small airports.
- By state DOT's for GA airports (NASAO interest).
- By consulting and engineering services companies for private or customer only access.
- Will continue support and development after initial deployment; for example include functions to comply with existing FAA GIS Standards.

Software FAA PAVEAIR – Home Page

	Federal Aviation Administration
Home Inventory Work PCI Reports Pred. Modling M	M&R Cond. Analysis Map Tools Login Member Area
Welcome to PAVEAIR PAVEAIR is a public, web-based application designed to assist organizations in the evaluation, management, and maintenance of their pavement networks. PAVEAIR is designed to fulfill the requirements of an Airport Pavement Management System as identified in Advisory Circular (AC) 150.5380-7A. PAVEAIR is an EMS intended for use by airport pavement engineers, airport management, cost accounting professionals charged with determining the most accurate PCI as a basis for maintaining the safest possible airport pavement quality within acceptable cost constraints and time horizons.	Log In User Name: Password: Image: Constant of the second

R&D Update – SWIFT 2009 September 16, 2009

Software FAA PAVEAIR – Work Page

PAVEALR Home Profile Password Data Management Logout qjia

FAA PAVEAIR : Member Area : Work

Network	1	Pike County Commissioners	test	
Branch	202	Apron		
Section	562 💌	c	APRON B	AIRPORT ROAL
Work History	848	9/13/2003	New Construction - AC	
WorkTrackingID	848			
SectionID	562			
DateTime	9/13/2003 12:00:00 AM			
Work	New Construction - AC			
Туре	NC-AC			
Project	FAA AIR 21			
Phase				
Quantity	0			
Thickness	38.100000001524			
ThicknessUnit	mm			
Cost	0			
MaterialType	Asphalt Concrete			
Material	ODOT 448			
Comment	ODOT 448			
WorkCompleted	True			
MajorMR	True			
BackCalculated				
WorkAreaUnit	m²			
WorkLinearUnit	m			
WorkThicknessUnit	in			
WorkQuantityUnit	m²			
QuantityUnit	SqFt			
<u>Update</u> <u>Cancel</u>				

Cab opuate – Swir i zou

Federal Aviation Administration

September 16, 2009

41

Software FAA PAVEAIR – Integration

Objectives

- Establish N_{design} for P- 401, Plant Mix Bituminous Pavement.
- Revise P-401 Specifications using the Superpave Gyratory Compactor.
- Run verification testing on a variety of well performing HMA mixes.
- In parallel with and complimentary to an FAA sponsored study being performed by ERDC at WES.

- Phase 1:
 - Determine N-design equivalent to 75-blow Marshall

• Phase 2:

- Validate N-design with performance tests
- Finalize N-design
- Phase 3:
 - Draft Superpave specification (New P-401)

Research Projects

Gyratory Mix Design

• Well performing Mixes

Mix Code Aggregate Nominal Type Maximum Aggregate Size	Aggregate	Nominal	Binder Grade		
	PG 64-22	PG 76-22 SBS Modified	PG 76-22 PE-Modified		
Mix-E1993	Gneiss	12.5 mm	x	X	X
Mix-E1996	Dolomite/granite	19 mm	x	X	X
Mix-E1997	Dolomite	25 mm	x	X	X
Mix-A	Basalt	19 mm	x		
Mix-D	Limestone	19 mm	x		
Mix-C	Crushed Gravel	19 mm	x	X	X
Mix-F	Argillite	12.5 mm	x		
Mix-B	Diabase	19 mm	X	X	X

N_{design} Summary

	FAA
Minimum	44
Maximum	104
Mean	72
Std. Dev.	15
COV, %	21.0

Phase 2: Performance Evaluation

- Evaluate effect of N_{des} on performance with respect to:
 - Asphalt content and/or gradation changes
 - Rut resistance: AMPT flow number & APA
 - Compatibility: compaction curve
 - Durability: film thickness & binder content

Phase 2 Mix Designs

Mix Name	Aggregate	NMAS	Binder Grade
Airport E/1993	Gneiss	12.5 mm	AC 20
Airport E/1997	Dolomite	25 mm	PG 82-22 PG 64-22
Airport A	Basalt	19 mm	PG 64-22
Airport D	Limestone	19 mm	PG 70-22
Airport C	Crushed gravel	19 mm	PG 64-28
Airport F	Argillite	12.5 mm	PG 64-22
Airport B	Diabase	19 mm	PG 64-22
Oceana*	Granite	19 mm	PG 70-22

* New Mix – poor performer

- Why
 - Current FAA design method does not consider slab curling or top-down cracking modes for rigid slabs.

Objectives

- Obtain in-situ data on vertical slab movements
- Monitor slab data over an extended period.

- History
 - Oct 2006:
 - Construction Completed with 64 Sensors installed
 - Initial data collected using portable data system
 - Mar 2007:
 - Permanent data collection and power generation system installed
 - Aug 2007:
 - Lightning Strike to System
 - Aug 2008:
 - Reinstalled Data Acquisition System & installed lightening suppression system
 - Jan 2009:
 - Installed New Data Acquisition System

R&D Update – SWIFT 2009 September 16, 2009

- Why
 - Very little research has been performed on asphalt longitudinal construction joints even though they are a known maintenance issue
 - No one has instrumented the joints to evaluate the causes of cracking after construction

Objectives

- To measure the strains and movement of these joints to better understand the failure/cracking mode
- Evaluate movement of joint due to environmental effects

Instrumentation

Research Projects

Field Instrumentation - LGA

• Instrumentation Plan Submitted to Port Authority

- Port Authority awarded the bid. Bid included:
 - Installation of FAA data collection cabinet
 - Installation of all FAA underground conduit
 - All saw cutting and coring required for gage installation

Components

- Similar to ATL
- Campbell Scientific Data Acquisition System
- Have direct power / no solar panels
- Remote Access / no phone line
- Installed gauges on Aug. 17th

- History
 - Work Started in 1992
 - 460 sensors installed
 - Remote access est. 1994
 - Automatic Data Collection and Periodic Site Visits from 1995 to 1999
 - Pavement Response under aircraft loads
 - Environmental parameters
 - Weather Conditions
 - Visual Pavement Inspections
 - Falling-Weight Deflectometer (FWD) Testing
 - Elevation Surveys

Instrumentation

- Strain Gauges
- Vertical Displacements
- Aircraft Position, Speed and Acceleration
- Environmental data

- Commissioned 1999
- Vehicle Weight = 1,200,000 lbs
- Max Tire Load = 75,000 lb (Per Tire)
- 16 Electric Motors 48 HP Each
- Top Speed 15 MPH
- Fully Programmable Load Control
- Fully Programmable Position Control
- Laser Data Communication System*
- 8 Camera Closed Circuit Video System*

- Purpose:
 - Modify the NAPTF Test Vehicle to accommodate 8- and 10-wheel landing gear configurations.
 - Allow the FAA to conduct full-scale testing of future landing gear designs.
- New Capabilities:
 - +/- 5 degrees of steering.
 - Larger rims with redesign for tire removal/installation without bearing removal.
 - Radial tires with greater load capacity than current bias ply tires 66,500 versus 55,700 lb.

Disconnecting Existing Modules

R&D Update – SWIFT 2009 September 16, 2009

Federal Aviation Administration

Relocating Existing Modules

Installing New Modules – Upper Section

Installing New Modules – Lower Section

December 2008

Hydraulic Work

Facilities Upgrade Pavement Testing Machine

Existing Control Cab

R&D Update – SWIFT 2009 September 16, 2009

Facilities Upgrade Pavement Testing Machine

New Control Cab

R&D Update – SWIFT 2009 September 16, 2009

Facilities Upgrade Pavement Testing Machine

• Replace Bias Ply Tires and Manufacture New Rims on Existing Load Modules (12 Sets Required).

R&D Update – SWIFT 2009 September 16, 2009

- Design Started August 2006
- Bid Documents Completed August 2008
- 100% design review preformed by Philadelphia District Army Corps of Engineers
- USACE to administer the construction contract
 - \$1.1 million estimated construction cost
- FAA to provide construction oversight
- Projected contract award <u>February 2009</u>

- 120 x 48 ft building (~5500 sq ft)
- Designed for Soils, Aggregates Concrete and Asphalt testing
- AMRL Certified
- CCRL Certified
- Material Testing for others

R&D Update – SWIFT 2009 September 16, 2009

- Asphalt Pavement Analyzer (APA)
- Contact Pressure
 - through rubber hose
 - Up to 250-psi
 - 100-psi (standard APA)
 - through aluminum wheels
 - Up to 500-psi
 - 200-psi (standard APA)

Variable rate of loading

Facilities Upgrade Heavy Vehicle Simulator

•Proposed Research Using HVS

- →High Tire Pressure Testing
- →Warm Mix Asphalt
- →Stone Matrix Asphalt
- →Asphalt Overlays of PCC
- →Recycled Asphalt Pavement
- →Polymer Modified Binders
- →Shear failure of HMA

R&D Update – SWIFT 2009 September 16, 2009

Jeffrey Gagnon, P.E. Manager - Airport Pavement Sub-Team Airport Technology R&D Branch Jeffrey.Gagnon@faa.gov INFRESSINI

www.airtech.tc.faa.gov